Newton's Divided Difference Interpolation Method

Newton's Divided Difference formula is used for polynomial interpolation. It provides a way to construct a polynomial that passes through a given set of points. The formula is particularly useful when the points are not equally spaced.

f(x)=y0+(xx0)f[x0,x1]+(xx0)(xx1)f[x0,x1,x2]+(xx0)(xx1)(xx2)f[x0,x1,x2,x3]f(x)=y_0+(x-x_0)f[x_0,x_1]+(x-x_0)(x-x_1)f[x_0,x_1,x_2]+(x-x_0)(x-x_1)(x-x_2)f[x_0,x_1,x_2,x_3]

Where:

  • f(x)f(x) is the interpolating polynomial ,which gives the value at x x
  • y0y_0 is the initial value corresponding to x0 x_0 given.
  • f[x0,x1,....,xn] f[x_0,x_1,....,x_n] are the divided differences. f[x0,x1...xn]=\ racf[x1...xn]f[x0,x1...xn1]xnx0 f[x_0,x_1...x_n] = \ rac{ f[x_1...x_n] -f[x_0,x_1...x_{n-1}]}{ x_n - x_0}
  • The terms (xx0)(xx1) (x - x_0)(x - x_1) \dots are Basis Polynomials,Here, 𝑥 is the point at which you want to evaluate the interpolating polynomial. xn x_ n is one of the known data points

Example of Newton's Divided Difference Interpolation

Given the following data points:

xy=f(x0)y= f(x_0)
01
13
349
4129
7813

We are tasked with finding f(x)f(x) where x=0.3x = 0.3.

Step 1: Calculate the divided differences for the yy values.

xy=f(x0)y=f(x_0)1storder 1^{st} order2storder2^{st} order3storder3^{st} order4storder4^{st} order
01\ rac3110=2\ rac{3-1}{1-0}=2\ rac23230=7\ rac{23-2}{3-0}=7\ rac19740=3\ rac{19-7}{4-0}=3\ rac3370=0\ rac{3-3}{7-0}=0
13\ rac49331=23\ rac{49-3}{3-1}=23\ rac802341=19\ rac{80-23}{4-1}=19 \ rac371971=3\ rac{37-19}{7-1}=3
349\ rac1294943=80\ rac{129-49}{4-3}=80\ rac2288073=37\ rac{228-80}{7-3}=37
4129\ rac81312974=228\ rac{813-129}{7-4}=228
7813

Step 2: Apply the Newtons Divided Interpolation formula:

f(x)=y0+(xx0)f[x0,x1]+(xx0)(xx1)f[x0,x1,x2]+(xx0)(xx1)(xx2)f[x0,x1,x2,x3]f(x)=y_0+(x-x_0)f[x_0,x_1]+(x-x_0)(x-x_1)f[x_0,x_1,x_2]+(x-x_0)(x-x_1)(x-x_2)f[x_0,x_1,x_2,x_3] \cdots

Step 3: Substituting the values into the interpolation formula:

f(0.3)=1+(0.30)2+(0.3)(0.31)7+(0.3)(0.31)(0.33)3+0f(0.3) = 1 + (0.3-0)2 + (0.3)(0.3-1)7 + (0.3)(0.3-1)(0.3-3)3 + 0

Step 4: After solving the equation, the interpolated value of f(x)f(x) at x=0.3x = 0.3 is approximately:

P(0.3)1.831P(0.3) \approx 1.831

This is the final result of the Newtons Divided Interpolation method.

Newton's Divided Difference Interpolation Calculator

X ValueY Value

Plot:

Difference Table

x