Newton Backward Interpolation Method

Newton Backward Interpolation is used to estimate the value of a function at a given point when the data points are tabulated at equal intervals. This method is particularly useful when you want to interpolate a value near the end of the data set. It utilizes backward differences to form the interpolation polynomial.

The formula for Newton Backward Interpolation is:

P(x)=yn+vΔyn+v(v+1)2!Δ2yn2+v(v+1)(v+2)3!Δ3yn3+v(v+1)(v+2)(v+3)4!Δ4yn4+ P(x) = y_n + v \cdot \Delta y_n + \frac{v(v+1)}{2!} \cdot \Delta^2 y_{n-2} + \frac{v(v+1)(v+2)}{3!} \cdot \Delta^3 y_{n-3} + \frac{v(v+1)(v+2)(v+3)}{4!} \cdot \Delta^4 y_{n-4} + \cdots

where:

  • v=xxnhv = \frac{x - x_n}{h}
  • xnx_n is the last value of xx in the data.
  • hh is the uniform difference between the xx values (where h=xnxn1h = x_n - x_{n-1}).
  • Δyn,Δ2yn,\Delta y_n, \Delta^2 y_n, \dotsare the backward differences.

This method is efficient for interpolating at or near the end of the data set.

Example of Newton Backward Interpolation

Let'ss say we are given the following data points:


xxyy
2428.06
2830.19
3232.75
3634.94
4040

We are tasked with finding yy where x=33x = 33


Step 1: Calculate the backward differences for the yy values.


xxyyΔy{\Delta y} Δ2y{\Delta^2 y} Δ3y{\Delta^3 y} Δ4y{\Delta^4 y}
2428.06
2830.192.13
3232.752.560.43
3634.942.19-0.37-0.8
40405.062.873.244.04

Step 2: use the formula v=xxnhv = \frac{x - x_n}{h} values.


Given x=33 and xn=40 with h=4,\text{Given } x = 33 \text{ and } x_n = 40 \text{ with } h = 4,
v=xxnhv = \frac{x - x_n}{h}
v=33404v = \frac{33 - 40}{4}
v=1.75v = -1.75

Step 3: Apply the Newton Backward Interpolation formula:


P(x)=yn+vΔyn+v(v+1)2!Δ2yn2+v(v+1)(v+2)3!Δ3yn3+v(v+1)(v+2)(v+3)4!Δ4yn4+ P(x) = y_n + v \cdot \Delta y_n + \frac{v(v+1)}{2!} \cdot \Delta^2 y_{n-2} + \frac{v(v+1)(v+2)}{3!} \cdot \Delta^3 y_{n-3} + \frac{v(v+1)(v+2)(v+3)}{4!} \cdot \Delta^4 y_{n-4} + \cdots

Substituting the values:

P(40)=40+(1.75(1.75+1))1!5.0600+(1.75(1.75+1)(1.75+2))2!2.8700+(1.75(1.75+1)(1.75+2)(1.75+3))3!3.2400+(1.75(1.75+1)(1.75+2)(1.75+3)(1.75+4))4!4.0400P(40) = 40 + \frac{(-1.75 \cdot (-1.75+1))}{1!} \cdot 5.0600 + \frac{(-1.75 \cdot (-1.75+1) \cdot (-1.75+2))}{2!} \cdot 2.8700 + \frac{(-1.75 \cdot (-1.75+1) \cdot (-1.75+2) \cdot (-1.75+3))}{3!} \cdot 3.2400 + \frac{(-1.75 \cdot (-1.75+1) \cdot (-1.75+2) \cdot (-1.75+3) \cdot (-1.75+4))}{4!} \cdot 4.0400

Step-by-step:

  1. First term: 4040

  2. Second term: (1.75)1!5.0600=8.85500\frac{(−1.75)}{1!}∗5.0600 = −8.85500

  3. Third term: (1.75(1.75+1))2!2.8700=0.17718\frac{(−1.75∗(−1.75+1))}{2!} ∗2.8700 = 0.17718

  4. Fourth term: (1.75(1.75+1)(1.75+2))3!3.2400=0.17718\frac{(−1.75∗(−1.75+1)∗(−1.75+2))}{3!} ∗3.2400 = 0.17718

  5. Fifth term: (1.75(1.75+1)(1.75+2)(1.75+3))4!4.0400=0.06904\frac{(−1.75∗(−1.75+1)∗(−1.75+2)∗(−1.75+3))}{4!} ∗4.0400 =0.06904

Adding them together:

P(33)=40+(8.855000000000004)+(1.883437500000003)+(0.1771875000000003)+(0.06904296875000004)P(33)= 40+(−8.855000000000004)+(1.883437500000003)+(0.1771875000000003)+(0.06904296875000004)

Thus, the interpolated value of yy at x=33x = 33 is approximately 33.2746633.27466

Newton Backward Interpolation Calculator

X ValueY Value

Plot: